Ningling Kang, PhD

Tumor Microenvironment & Metastasis


Dr. Ningling Kang is the section leader of Tumor Microenvironment and Metastasis at the Hormel Institute. She received postdoctoral training in Department of Pediatric and Adolescent Medicine (2000-2003) and in Division of Gastroenterology and Hepatology, Department of internal Medicine (2003-2004) at Mayo Clinic, Rochester, Minnesota. Prior to joining the Hormel Institute, Dr. Kang has worked as an Associate Consultant in Research with academic appointment of Assistant Professor at Mayo Clinic from 2007 and 2013. Her research program, focusing on the prometastatic liver microenvironment and bidirectional interactions between cancer cells and the liver, is currently funded by NCI/NIH (2007-2027).


Beijing Normal University
Beijing, China – Biology
Beijing Normal University Graduate School
Beijing, China – Genetics
Free University Berlin
Berlin, Germany – Molecular Medicine
Mayo Clinic
Rochester, MN, USA – Cell biology and signaling


Pre-doctoral fellowship in DFG Graduiertenkolleg GRK276 ‘Signalerkennung and– umsetzung’, Free University Berlin, Germany
Ph.D. with Summa cum laude, Free University Berlin, Germany
Sheila Sherlock Clinical and Translational Research in Liver Diseases Award, ALF/AASLD
The Howard Temin Award, NCI/NIH
Young Investigator Award, Mayo Clinic Angiogenesis Symposium
Research Early Career Development Award, Mayo Clinic
Pilot and Feasibility Award, P30 Mayo Clinic Center for Cell Signaling in GI, Mayo Clinic
New Named Investigator, P30 Mayo Clinic Center for Cell Signaling in GI, Mayo Clinic

Professional memberships

P30 Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic
Masonic Cancer Center, University of Minnesota

Research Interests

Molecular Mechanisms of hepatic stellate cell activation
Stiffness-induced mechanosignaling in tumor-associated myofibroblasts


  1. Liankang Sun, Yuanguo Wang, Amaia Navarro-Corcuera, Sumera Ilyas, Xinyi Tu, Yu Shi, Kangsheng Tu, Qingguang Liu, Zhenkun Lou, Haidong Dong, Usman Yaqoob, Vijay H. Shah, and Ningling Kang. PD-L1 Promotes Myofibroblastic Activation of Hepatic Stellate Cells by Distinct Mechanisms Selective for TGFβ receptor I versus II. Cell Reports 38, 110349 February 8, 2022.
  2. Amaia Navarro-Corcuera, Tejasav S Sehrawat, Hunter R Gibbons, Nidhi Jalan-Sakrikar, Nicholas E Pirius, Feda H Hamdan, Sayed Obaidullah Aseem, Sheng Cao, Jesus M Banales, Ningling Kang, William A Faubion, Nicholas F LaRusso, Vijay H Shah, Robert C Huebert. Long Non-Coding RNA ACTA2-AS1 Promotes Ductular Reaction by Interacting With the p300/ELK1 Complex. J Hepatol. 2021 Dec 23;S0168-8278(21)02288-1.
  3. Xia QianWei ZhangAlireza ShamsKahee MohammedAlex S BefelerNingling Kang Jinping Lai. Yes-associated protein-1 may serve as a diagnostic marker and therapeutic target for residual/recurrent hepatocellular carcinoma post-transarterial chemoembolization. Liver Res. 2020 Dec;4(4):212-217.
  4. Gao J, Wei B, Liu M, Hirsova P, Sehrawat TS, Cao S, Hu X, Xue F, Yaqoob U, Kang N, Kostallari E, Shah VH. Endothelial p300 promotes portal hypertension and hepatic fibrosis through CCL2-mediated angiocrine signaling. Hepatology. 2020 Nov 7.
  5. Liu D et al (2020) Protein Diaphanous Homolog 1 (Diaph1) Promotes Myofibroblastic Activation of Hepatic Stellate Cells by Regulating Rab5a Activity and TGFβ Receptor Endocytosis. FASEB J. 2020 Apr 18. Online ahead of print.
  6. Kang N (2020) Mechanotransduction in Liver diseases. Semin Liver Dis. 2020 Feb;40(1):84-90.
  7. Chen Y et al (2019) Focal Adhesion Kinase Promotes Hepatic Stellate Cell Activation by Regulating Plasma Membrane Localization of TGFβ Receptor 2. Hepatol Commun. 2019 Dec 20;4(2):268-283.
  8. Wang Y (2019) p300 Acetyltransferase Is a Cytoplasm-to-Nucleus Shuttle for SMAD2/3 and TAZ Nuclear Transport in Transforming Growth Factor β-Stimulated Hepatic Stellate Cells. Hepatology. 2019 Oct;70(4):1409-1423.
  9. Liu Z et al (2019) Transforming growth factor β (TGFβ) cross-talk with the unfolded protein response is critical for hepatic stellate cell activation. J Biol Chem. 2019 Mar 1;294(9):3137-3151.
  10. Dou C et al (2018) P300 Acetyltransferase Mediates Stiffness-Induced Activation of Hepatic Stellate Cells Into Tumor-promoting Myofibroblasts. Gastroenterology. 2018 Jun;154(8):2209-2221. Comment in: P300, A New Player in Mechanosensitivity and Activation of Cancer-Associated Fibroblasts. Gastroenterology. 2018 Jun;154(8):2025-2026.
  11. Xiang X et al (2018) Vasodilator-stimulated phosphoprotein promotes liver metastasis of gastrointestinal cancer by activating a β1-integrin-FAK-YAP1/TAZ signaling pathway. npj Precision Oncology 2018;2:2.
  12. Kang N et al (2015) Membrane-to-Nucleus Signals and Epigenetic Mechanisms for Myofibroblastic Activation and Desmoplastic Stroma: Potential Therapeutic Targets for Liver Metastasis? Mol Cancer Res. 2015 Apr;13(4):604-12.
  13. Liu C et al (2014) PDGF receptor alpha promotes TGF-β signaling in hepatic stellate cells via transcriptional and post transcriptional regulation of TGF-β receptors. Am J Physiol Gastrointest Liver Physiol. 2014 Oct1;307(7):G749-59.
  14. Tu K et al (2015) VASP promotes TGF-β activation of hepatic stellate cells by regulating Rab11 dependent plasma membrane targeting of TGF-β receptors. Hepatology. 2015 Jan;61(1):361-74.
  15. Liu C et al. (2013) IQGAP1 suppresses TβRII- mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest. 2013 Mar 1;123(3):1138-56.
  16. Kang N et al. Hepatic stellate cells: Partners in crime for liver metastases? Hepatology. 2011 Aug;54(2):707-13.
  17. Routray C et al (2011) Protein kinase G signaling disrupts Rac1 dependent focal adhesion assembly in liver specific pericytes. Am J Physiol Cell Physiol 2011 Jul;301(1):C66-74.
  18. Kang N et al (2010) Focal adhesion assembly in myofibroblasts fosters a microenvironment that promotes tumor growth. Am J Path 2010 Oct;177(4):1888-900.
  19. Kang-Decker N et al (2008) Nitric oxide regulates tumor cell cross-talk with stromal cells in the tumor microenvironment of the liver. Am J Path 2008 Oct;173(4):1002-12.
  20. Semela D et al (2008) PDGF signaling through ephrin-B2 regulates hepatic vascular structure and function. Gastroenterology. 2008 Aug;135(2):671-9.
  21. Langer DA et al (2008) Nitric oxide promotes caspase-independent hepatic stellate cell apoptosis through the generation of reactive oxygen species. Hepatology 2008 May 5.
  22. Kang-Decker N et al (2007) Nitric oxide promotes endothelial cell survival signaling through S-nitrosylation and activation of dynamin. J Cell Sci 2007 Feb 1;120(Pt 3):492-501.
  23. Wendt MK et al (2006) Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene, 2006 Aug 17;25(36):4986-97.
  24. Bhattacharya R et al (2005) Regulatory role of dynamin-2 in VEGFR-2/KDR-mediated endothelial signaling. FASEB J 2005 Oct;19(12):1692-4.
  25. Kang-Decker N et al (2004) Loss of CBP causes T cell lymphomagenesis in synergy with p27Kip1 insufficiency. Cancer Cell 2004 Feb;5(2):177-89.
  26. Babu JR et al (2003) Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J Cell Biol 2003 Feb 3; 160(3):341-53.
  27. Kang-Decker, N et al (2001) Lack of acrosome formation in Hrb-deficient mice. Science 2001 Nov 16; 294(5546):1531-3.

Primary Research Areas

Prometastatic tumor microenvironment of the liver and paracrine interactions between cancer cells and hepatic stellate cells

Contact Information